Rotational motion and spatial wavefield gradient data in seismic exploration – a review

Cedric Schmelzbach¹, David Sollberger¹, Cédéric Van Renterghem^{1,2}, Mauro Häusler¹, Pascal Edme^{1,3}, and Johan Robertsson¹

¹ETH Zurich, Switzerland; ²Now at: Deloitte, Zurich, Switzerland; ³Formerly: Schlumberger Cambridge, Research, UK

5th IWGoRS, Taiwan, 26 September 2019

A long-standing problem in exploration seismology

Global seismology

Exploration seismology

Ever rising channel (instrument) count...

Manning et al. (2019), **The nimble node — Million-channel land recording systems have arrived**, *TLE* >10K shot points per day Large receiver arrays with >100K # geophones > 200 people np moves within months

EHzürich

Potential of gradient and rotation data in exploration seismology

- 1. Link of rotation to S-waves and surface waves
 - 1. Isolate S-waves
 - 2. Surface-wave suppression
- 2. Spatial wavefield gradient
 - Local slowness
 - Wavefield separation (up-/down; P- / S- wave)
 - Wavefield reconstruction (interpolation)

3. Rotational motion as new observable in seismology

- Seismic wavefield characterization & decomposition
- Novel techniques to estimate subsurface properties (near-surface elastic properties, anisotropy, ...)
- 4. Correction for sensor tilt
 - Tilt of ocean-bottom sensors due to currents

Overview Developments and applications of gradient data in exploration

Wavefield characterization & separation

- Plane wave and polarization analyses
- Wave-equation based approaches
- Wavefield reconstruction A signal processing perspective
- Hardware developments: Gradient sensors
 - 'Gradient-based' rotation and divergence sensors
 - Receiver perturbation corrections

Background

Schmelzbach et al. (2018), Geophysics.

D-ERDW Department of Earth Sciences

6C measurements with a single station 3 components of translation & 3 components of rotation

Department of Earth Sciences

Gradients, divergence and rotation at the free-surface

Robertsson and Curtis (2002), Geophysics; Schmelzbach et al. (2018) Geophysics.

D-ERDW Department of Earth Sciences

Rotation

- P^US^D (Down-going wavefield)
- Rayleigh waves

Divergence

- S^UP^D (Down-going wavefield)
- Rayleigh waves

Coherent energy on $\dot{\omega}_x$ suggests out-of-plane arrivals

 $\partial_x V_x + \partial_y V_y$ $\dot{\omega}_{x}$ $\dot{\omega}_{v}$ PUSD PUSD 100 SUPD Time [ms] S 300 350 R 400 R 450 500 20 30 ⁴⁰ x [m] 10 10 20 *x* [m] *x* [m]

D-ERDW Department of Earth Sciences

Receiver perturbation corrections

Receiver perturbation correction Sollberger et al. (2019), GJI.

Underlying model: Waveforms at one receiver can be predicted based on waveform measured at a reference station and the spatial gradients

$$\tilde{u}_i^{\text{pred}} = [\tilde{u}_0^{\text{obs}} + \delta x_i \partial_x \tilde{u}_0 + \delta y_i \partial_y \tilde{u}_0]$$

Receiver perturbation correction Sollberger et al. (2019), GJI.

Underlying model: Waveforms at one receiver can be predicted based on waveform measured at a reference station and the spatial gradients

$$\tilde{u}_i^{\text{pred}} = \tilde{C}_i [\tilde{u}_0^{\text{obs}} + \delta x_i \partial_x \tilde{u}_0 + \delta y_i \partial_y \tilde{u}_0]$$

Perturbation factor

 \rightarrow Jointly invert for gradients and receiver perturbation factor

Synthetic data example

Sollberger et al. (2019), GJI.

D-ERDW Department of Earth Sciences

Field-data example

6C polarization analysis & wavefield separation

3C polarization models – Example of a P-wave (in a medium)

3C hodograms

3C polarization model depends on

- Wave mode
- Azimuth & incidence angle
- Rayleigh waves: ellipticity

3C versus 6C polarization models

3C hodograms

6C hodograms

3C polarization model depends on

- Wave mode
- Azimuth & incidence angle
- Rayleigh waves: ellipticity

6C Polarization model depends on

- Wave mode
- Azimuth & incidence angle
- P- and S-wave velocity
- Rayleigh waves: ellipticity

6C plane wave polarization models

P PS PP

Unique for each wave type!

6C polarization analysis

6C Polarization model depends on

- Wave mode
- Azimuth & incidence angle
- P- and S-wave velocity
- Rayleigh waves: ellipticity

Find polarization parameters by matching a 6C polarization template to the data

6C polarization analysis

Because the 6C polarization models are unique, we can...

- Scan the data for a polarization model \rightarrow Wave type identification
- Given a polarization model, scan for the wave parameters \rightarrow Azimuth, incidence angle, velocities, ellipticity
- Rotate 6C into a 'wavetype'-specific coordinate system \rightarrow Wavefield separation (e.g. by wavetype, azimuth)

Two interfering arrivals

6C data

3C data

D-ERDW Department of Earth Sciences

Sollberger et al. (2018), GJI. Wavefield separation Wave-mode space Recording 6C coordinate transformation Time Rotation Translation $^{\wedge}$ v V $\stackrel{>}{>}$ > × , $^{>}$ >~ v_x ٧_z v_x v_x v_x v_z **D-ERDW**

Department of Earth Sciences

23 1

Department of Earth Sciences

Wavefield separation Wave-mode space Recording Forward 6C coordinate transformation Time Backward 6C coordinate transformation Rotation Translation ≥ $^{\wedge}$ > × , >~ $^{>}$ $^{>}$ v_x ٧_z v_x v_x v_x ٧_z **D-ERDW**

Wavefield separation example: Rayleigh wave suppression

Wavefield separation example: Rayleigh wave suppression

E *H* zürich

D-ERDW

Department of Earth Sciences

Wavefield separation example: Rayleigh wave suppression

Moderate success with field data so far... Extension to time-frequency domain under way with promising first results.

Gradient-based wavefield separation

Van Renterghem et al. (2018), GJI; Van Renterghem et al. (2019a,b), Geophysics.

Seismic recordings at the free surface

EHzürich

Motivation: "clean-up" wavefield recorded at the free surface

Gradient-based filters to separate wavefield at a single station

(Robertsson and Curtis, 2002; Van Renterghem et al., 2018)

Up-going (incident) / down-going wavefield

... and/or ...

P- / S-wavefield

Wavefield separation of Ocean Bottom Sensor (OBS) data

Up/down separation

$$v_h^U\approx \frac{1}{2}\left(v_h+\frac{1}{i\omega}(\alpha-2\beta)\frac{\partial v_z}{\partial_h}\right)$$

Up/down + P/S separation

$$v_h^{S^U} \approx \frac{1}{2} \left(v_h - \frac{1}{i\omega} 2\beta \frac{\partial v_z}{\partial h} + \frac{1}{i\omega} \frac{1}{\rho} \frac{\partial p}{\partial h} \right)$$

Van Renterghem et al., submitted.

Wavefield separation of OBS data

rotational data

Up/down separation

Van Renterghem et al., submitted.

Moere Vest OBS dataset

D-ERDW Department of Earth Sciences

Elastic wavefield decomposition

Water layer multiple P-waves

D-ERDW Department of Earth Sciences **EH**zürich

Wavefield reconstruction – A signal-processing view on gradients

Robertsson et al. (2008), Geophysics.

Wavefield reconstruction with combined pressure and pressure gradient data

Marine seismic exploration : Multicomponent streamer

• Equation of motion relates particle acceleration to pressure gradient

$$\nabla p = -\rho \dot{\overline{v}}$$

Sampling

- Shannon's (classic) sampling theorem (Shannon, 1947)
- General mutlichannel sampling theorem (Linden, 1959)
- Generalized sampling expansion (Papoulis, 1977) If a quantity and its derivative are available, then the Shannon-Nyquist sampling requirement can be relaxed.

Wavefield reconstruction

 Multichannel sampling theorem for a multicomponent streamer (Robertsson et al., 2008)

$$p(y_0) = \sum_{m=-\infty}^{\infty} \left\{ p\left(\frac{2m}{\sigma}\right) + i\omega \rho\left(y_0 - \frac{2m}{\sigma}\right) v_y\left(\frac{2m}{\sigma}\right) \right\} \operatorname{sinc}^2\left(\sigma \frac{y_0}{2} - m\right)$$

Cross-line streamer data reconstruction

(e.g. Vasallo et al., 2010, Geophysics)

D-ERDW Department of Earth Sciences

Hardware developments Gradient and divergence sensors

EHzürich

Gradient sensors (Work by P. Edme at SLB)

'Conventional' surface-based layout: 'horizontal' finite differences

Vertical array of two 3C sensors 'Vertical' finite differences Reduced (coupling) variations

A five component land seismic sensor for measuring lateral gradients of the wavefield

Everhard Muyzert^{1*}, Nihed Allouche¹, Pascal Edme¹ and Nicolas Goujon²

¹Schlumberger Cambridge Research, High Cross, Madingley Road, Cambridge, CB3 0EL, UK, and ²WesternGeco, WesternGeco AS, Oslo Technology Center, P.O. Box 234, N-1372 Asker, Norway

Application of the 5C sensor (Work by P. Edme at SLB)

Note spatially aliased noise

EHzürich

Divergence sensor – 'Land hydrophone' (Work by P. Edme at SLB)

Divergence at the free-surface

$$U_{H} = K_{1} \cdot \frac{\partial U_{Z}}{\partial z} = K_{2} \cdot \left(\frac{\partial U_{X}}{\partial x} + \frac{\partial U_{Y}}{\partial y}\right)$$

K=function of near-surface elastic properties

Local velocity filters

 $U_H = K \cdot (p_X V_X + p_Y V_Y)$

Record mainly slowly propagating wavefield (noise) both inline and crossline simultaneously

Schmelzbach et al. (2018), Geophysics.

EHzürich

Divergence sensor – 'Land hydrophone' (Work by P. Edme at SLB)

Divergence at the free-surface

$$U_{H} = K_{1} \cdot \frac{\partial U_{Z}}{\partial z} = K_{2} \cdot \left(\frac{\partial U_{X}}{\partial x} + \frac{\partial U_{Y}}{\partial y}\right)$$

K_i=function of near-surface elastic properties

Local velocity filters $U_{H} = K \cdot (p_{X}V_{X} + p_{Y}V_{Y})$

Record mainly slowly propagating wavefield (noise) both inline and crossline simultaneously

- 2 component measurement:
 - V_Z : Signal
 - U_H : Omni-directional 'noise' model

TECHNICAL ARTICLE 🚯

Seismic wavefield divergence at the free surface

Pascal Edme^{1*}, Everhard Muyzert², Nicolas Goujon³, Nihed El Allouche² and Ed Kragh²

Summary and outlook

Summary

Spatial gradients at the free-surface – Rotation

Applications groups

- 6C wavefield characterization
- Wavefield separation
 - 6C polarization based separation
 - Wave-equation based
 - Gradient data as noise model
- Wavefield reconstruction

Acquisition

- Receiver coupling corrections
- Gradient sensor
- Divergence sensor

D-ERDW

Outlook

More applications

Space

New sensing technologies (DAS, ...)

Open questions

- When do we measure the wavefield at the free-surface?
- Array-derived rotations vs. direct measurement

